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Abstract This work presents a comprehensive study on the
cycling effects on morphological, nanomechanical, and
interfacial properties of sputtered TiO2 anode film during
discharge/charge cycling. TiO2 film mechanically fails due
to the repeated volume change and related generation/
relaxation of stress induced by electrochemical phase
transformation. The induced stress intensifies the initiation/
propagation of cracks, also the interfacial delamination. Both
morphology and mechanical property changes have harmful
effects on the electrical contact, resulting in the battery aging.
This paper also demonstrates that the experiment and analysis
method is effective to characterize the interfacial reliability
within thin film microbatteries.
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Introduction

Lithium-ion batteries have attracted much attention due to
high energy density, long cycle life, and little memory
effect. Advances in MEMS technologies reduce the size,
current density, and power requirements of electronic
devices to lower levels, promoting the development of thin
film microbatteries, which have special applications in
semiconductor chips, implanted medical devices, and
integrated circuits [1, 2]. Although prolonging battery life
has become more significant, the investigation of aging

mechanism is still very challenging since capacity fading
originates from various interrelated processes. Apart from
electrochemical issues, underlying aging phenomenon can
be related to the mechanical failure due to volume change
and lattice distortion induced by Li+ insertion/extraction
and the related generation/relaxation of intercalation-
induced stress [3–5]. Currently, microbattery technology is
in the transition from traditional electrochemistry to solid-
state physics; interfacial reliability of electrode film has
become a critical issue due to its significant roles in both
structural integrity and cycling performance of thin film
batteries [6, 7]. However, previous studies have less
concern on these issues since the quantification of
interfacial reliability is not simple, requiring not only
practical experimental method but also theoretical analysis
on solid adhesion mechanics [8–10]. Therefore, using the
experimental and analysis method developed in the previ-
ous study [11], this combined study has investigated the
cycling effects on surface morphology, nanomechanical,
and interfacial reliability of TiO2 anode film using various
characterization techniques, which can give a comprehen-
sive insight into the aging mechanism of TiO2 anode film,
providing a new perspective to understand the thin film
battery aging also.

Experimental procedure

TiO2 film was deposited on Ti substrate by dc sputtering
using a titanium target at a power of 100 W in Ar/O2 (3:1)
atmosphere at room temperature. The pure Ti substrate
(1 cm diameter and 1 mm thick) was previously autopol-
ished to a mirror-like surface (by alumina polishing agent).
Film thickness was measured by surface profilometer as
150 nm. Microstructure of film was characterized by X-ray
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diffraction (XRD). The two-electrode half-cell using TiO2

film as working electrode and Li metal foil as counter
electrode was assembled in an Ar-filled glove box. The
electrolyte was 1-M LiPF6 (EC/DEC) solution. Galvano-
static discharge/charge cycling was conducted with a
voltage of 0.01–2.5 V at a constant current density of
15 μA cm−2 using Neware battery tester. Atomic force
microscopy (AFM) was conducted in tapping mode using a
silicon tip with spring constant of 2 Nm−1 to study the
topography changes during cycling. Surface roughness
can be quantitatively measured by root-mean-squared
roughness (RMS) determined by AFM program.

Elastic modulus and nanohardness were determined by
nanoindenter with continuous stiffness measurement option
and standard Berkovich indenter tip under the strain rate
control (0.05 s−1). Wedge indentations, conducted by
another nanoindenter using 90° diamond wedge tip under
load control, were used to induce the interfacial delamina-
tion. To characterize the interfacial crack profile, focused

ion beam (FIB) was used to make cross-sectional cuttings.
The cross-sectional and plain view images of interfacial
delamination can be captured by FIB and field-emission
scanning electron microscopy (FESEM), respectively.

Results and discussions

Structural and electrochemical characterization

Figure 1a shows the XRD pattern of TiO2 film on Ti
substrate deposited at room temperature. There is no
detectable peak of TiO2 except the diffraction peaks of Ti
substrate (marked by arrows), indicating that TiO2 film is
poorly crystalline (nanocrystalline). This is similar to the
findings in previous studies [12]. Figure 1b shows the
initial discharge/charge curves for TiO2 anode film,
indicating a distinct discharge plateau at about 1.75 V vs.
Li/Li+, which is in well agreement with the typical

Fig. 1 a XRD pattern of as-deposited TiO2 anode film on Ti substrate, b the first discharge/charge curves, and c cycling performance of TiO2

anode film up to 100 cycles

Fig. 2 AFM topography of a deposited, b 10 cycled, c 50 cycled, and d 100 cycled TiO2 film
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electrochemical characteristic of TiO2 anode. The electro-
chemical reaction for TiO2 on Li+ insertion/extraction can
be written as [13, 14]:

TiO2 þ xLiþ þ xe�! LixTiO2 ð1Þ

As shown in Fig. 1c, nanocrystalline TiO2 anode film
shows large discharge/charge capacity and excellent cycling
stability up to 100 cycles. However, there is a large
irreversible capacity loss in the initial cycle, which is
attributed to several phenomena: (a) the formation of solid
electrolyte interface film accompanied by the irreversible
consumption of Li+ and (b) severe side reaction related to
larger contact area and shorter diffusion length in thin film
electrode [15].

Surface topography

Figure 2 shows both 2D and 3D AFM topography of TiO2

film at different cycling stages. There is an observable
volume expansion with the increase of cycling number,
especially after 50 cycles. The film shows bumping and
rough surface due to Li+ irreversible insertion. As shown in
Fig. 2c, d, microcracks can be induced by the film
contraction upon Li+ extraction. These cracks have harmful
effects on the electrical contact between anode film and the
substrate, resulting in a rise in impedance and a reduction of
capacity [16, 17]. In addition, nonuniformity is observed
due to the agglomeration of nanograins, which may be

induced by the electrochemical migration. The surface
topography changes also lead to an increase in surface
roughness in terms of RMS (Fig. 3a) since TiO2 anode film
cannot return to the original volume upon Li+ extraction
due to the poor crystallinity accompanied by the surface Li+

absorption.

Nanomechanical and interfacial reliability

The elastic modulus and hardness of TiO2 films are
determined by analyzing nanoindentation load-
displacement (P–h) curves [18, 19]. Figure 3b shows that
both elastic modulus and nanohardness decrease with the
increase of cycling number. Furthermore, Fig. 4 compares
P–h curves at different cycling stages. The displacement
steadily increases at the same load with the increase of
cycling number. This is mainly due to the decrease of
hardness since the indentation measures the penetration
resistance to the compressive intrusion of indenter tip [20].
Upon the discharging of TiO2/Li half-cell, the migration of
Li+ into TiO2 requires a volume expansion of anode film.
This volume expansion is constrained by the rigid substrate,
resulting in compressive stress in the film. Li+ is removed
from the anode upon charging, introducing porosity into the
film, which can relax the compressive stress more rapidly
than the delithiation process [21, 22]. Thus, further
delithiation process leads to a volume contraction, inducing
tensile stress in the film. In addition, Li+ insertion/
extraction into TiO2 anode film leads to the lattice
parameter change and crystal distortion, inducing further

Fig. 3 a Surface roughness
measured by AFM and b calcu-
lated elastic modulus and nano-
hardness of TiO2 anode film at
different cycling stages

Fig. 4 P–h curves of a deposited, b 10 cycled, c 50 cycled, and d 100 cycled TiO2 film
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stress and strain to the nanograins. The induced stress
accumulates over cycles finally surpassing the strength of
anode material, causing fracture and microcracking. Thus,
after discharge–charge cycle, the intercalation-induced
stress together with microcracks can lead to the mechanical
degradation of TiO2 anode film.

Combining FESEM plain view and FIB cross-sectional
view images of wedge indentation impression (Fig. 5a, b),
when the indentation load is higher than a critical value, i.e.,
6 mN for as-deposited film, 4 mN for cycled film, the
interfacial delamination occurs at the penetration depth of
about 100 nm. The interface toughness can be calculated as
described previously [11]. As summarized in Table 1, there is
a considerable decrease of interface toughness during
100 cycles. This is mainly attributed to the reduction of
elastic modulus since the indentation-induced stress is
proportional to the elastic modules (Fig. 3b). Apart from
this, porosities and cracks induced by lithiation/delithiation
also play significant roles; the denser as-deposited film has
higher interface toughness than cycled films. Since the crack
propagation is more difficult through compressive stress
field, the tensile stress after discharge/charge cycling also
enhances the interfacial delamination; anode film is more
likely to detach from the substrate [23]. It is noted that the
decreases in elastic modulus, hardness, and interfacial
toughness are more significant during the first 10 cycles,
corresponding to the larger capacity fading during the initial

cycles. Furthermore, according to our previous study [24],
rutile RuO2 anode film with worse cycling performance and
surface morphology stability shows more significant degra-
dation in both nanomechanical properties and interfacial
reliability. Therefore, there is a relationship between the
capacity fading and nanomechanical degradation of anode
film within lithium-ion batteries.

Conclusions

In this study, TiO2 films have been fabricated by reactive
sputtering and investigated as anode for lithium-ion
batteries, which expand with Li+ insertion and contract
with Li+ removed, accompanying with a rise in surface
roughness. Mechanical stress induced by volume expansion/
contraction drives the initiation/propagation of micro-
cracks, also enhancing the interfacial delamination.
Electrochemical phase transformations also take place,
which induce lattice distortion and further mechanical
stress, leading to the mechanical degradation at nano-
scale. Both mechanical degradation and interfacial
delamination have harmful effects on the electrical
contact of electrode film, reducing the battery life. This
study has clearly shown the electrochemical cycling
effects on morphological, nanomechanical, and interfacial
properties of TiO2 anode, providing a new perspective for

Fig. 5 a FESEM plain view and
b FIB cross-sectional view
images of interface delamination

Table 1 Average value of interface toughness and key parameters for TiO2 anode film

Short axis crack
length, 2a (μm)

Indentation plastic
depth, hp (μm)

Indentation-induced
stress, σ0 (MPa)

Critical buckling stress,
σc (MPa)

Interface toughness,
Γi (J/m

2)

Deposited 0.94±0.03 0.063±0.002 2683.06±85.81 15535.61±999.78 2.75±0.17

10 cycled 1.07±0.03 0.063±0.001 1862.36±37.65 9493.37±573.99 1.66±0.07

50 cycled 1.33±0.03 0.072±0.001 1479.16±38.81 4578.16±179.54 1.40±0.07

100
cycled

1.45±0.04 0.071±0.002 1112.10±32.21 3250.75±191.12 0.95±0.05

Critical loads, Pmax, for as-deposited are 6 mN; for 10th, 50th, and 100th cycled films, the critical loads are 4 mN
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understanding the thin film battery aging. This study also
demonstrates that nanoindentation experiment and related
analysis method is proved effective to quantify interfacial
reliability within thin film microbatteries.
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